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ABSTRACT

The land-use change in the Hasdeo River watershed has been observed with all its sub watersheds. The
changing patterns may portend localized impairment to forest and agricultural sub watershed. In this
study, Land-use land-cover (LULC) change was modeled using terrset modeling software. The Hasdeo
river watershed (geographical extent of 10,396.373 km2) is a part of the Mahanadi River basin in Chhattisgarh,
India. Hasdeo River originates from Sonhat (Koriya district, Chhattisgarh) and is submerged into the river
Mahanadi. It flows in the stretch of 330 km from north to south direction. This river has eight subwatersheds
with rich forest diversity and perennial water resources. IRS-1D & P6 LISS3 images from the years 2000 and
2013 were used to investigate the LULC pattern. This has been used for the prediction of LULC change
patterns for the years 2035 and 2050 based on the Markov model. The result of the project LU/LC map for
the year 2000-2035 and 2000-2050 show that the dense forest area will decrease by 12.30% and 15.68%
respectively. The settlement area will significantly increase by 20.13% (2035) and 34.90% (2050) and will be
the dominant land-use type in the watershed. It shows that population pressure will directly affect forest
vegetation and agriculture activities. This study will be helpful for the effective sustainability approach for
maintaining the proper LULC pattern of land-use change in the watershed. This changing pattern will also
influence the farming pattern in the catchment area of the Hasdeo River watershed.
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Introduction

In the recent decade, a variety of land-use change
models have been developed in the earth system to
meet the needs of land management and a better
evaluation of the future role of LULC changes. Mod-
eling is a useful tool for predicting alternate future
paths, as well as for conducting experiments to test
our understanding of essential processes and quan-
titatively defining them (Veldkamp and Lambin,
2001; Lambin et al., 2000). Satellite-based remote

sensing is now widely acknowledged and widely
employed to detect LULC changes in a reliable
manner.Satellite data are useful, inexpensive, and
widely used to create LULC datasets (Singh, 1989;
Lu et al., 2014). In the flexible context of GIS, geo-
graphic and statistical analysis with modelling are
carried out. Satellite imagery is used in GIS technol-
ogy to monitor land cover types using spectral cat-
egorization and Spatio-temporal reflectance to con-
struct linear connections (Masek et al., 2008; Tan et
al., 2009).
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Land use and cover change modelling is cur-
rently gaining authentic valuation, and there are
numerous modelling programmes available
(Pontius and Chen, 2006). In LULC change investi-
gations, only a few previous studies have attempted
to combine satellite remote sensing and GIS to quali-
tative modelling methodologies. The Cellular Au-
tomata (CA) Markov, Markov chain is one of the
most widely used land use and land cover model-
ling tools and approaches. The cellular automaton is
a type of computer which is used in this evaluation
process. The Markov model is a form of spatial tran-
sition-based model that may be used to forecast fu-
ture land development using probabilistic predic-
tions (Rozario et al., 2017; Kokkinos and Maras,
1997). Cellular Automata (CA) has a spatial compo-
nent (Soe and Le, 2006), and it can change its state
based on a rule that links the new state to the previ-
ous state and the states of its neighbours (Clarke and
Gaydos, 1998). It is used in LULC models that can
mimic a variety of land-use scenarios (Thomas and
Laurence, 2006).

To assess the quantitative and qualitative charac-
ter of the LULC change data and to prioritise loca-
tions of impairment within a sub-watershed,
Markov Chain models are used. It’s a descriptive
and interrogative technique for quantifying changes
in land usage throughout a human-dominated land-
scape (Muller and Middleton, 1994). This model ex-

amines how LULC affects and interacts with natural
resource management practises (Wehmann and Liu,
2015; Merem et al., 2011).

This work describes a method for analysing and
forecasting LULC changes in the Hasdeo watershed,
which is part of the Mahanadi river basin in
Chhattisgarh, India, between 2000 and 2050, using
satellite remote sensing, GIS, and Markov chain
modelling.

Methodology

Study Area

The Hasdeo river is a tributary of Mahanadi River in
Central India. It is located between 210 45’ North to
230 33’ North latitude and 820 00’ East to 830 04’ East
longitude in Chhattisgarh, India. The total length of
the river is 333 km. The geographical extent of the
Hasdeo river watershed is 10,396.37 km2. The water-
shed (Fig. 1) is located in the northern topography of
Chhattisgarh, India, and is one of the primary wa-
tersheds of the Mahanadi river basin. The watershed
is geologically characterized by steep, rocky terrain,
the presence of Gondwana rocks, and fertile soil,
and it spans in most of the area of the Koriya, Korba
and Janjgir-Champa districts of Chhattisgarh state.
The research area has a cool and warm sub-tropical
climate with a good average rainfall of 1254

Fig. 1. Location of Hasdeo watershed
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millimetres. The Hasdeo river (perennial) is the
main stream with the Ahiran, Tan, Chornai, Bamhni
etc as its tributaries. The topographical conditions in
the area is ideal for forest vegetation, irrigation and
the production of high-yielding crops. The northern
and central part of the watershed is full of tropical
dry deciduous type of forest species. Shorea robusta
is the primary forest tree species found in the area.
The other subsidiary species found are Tectona
grandis, Terminalia arjuna, Terminalia tomentosa,
Diospyrous melanoxylon, Anogeissus latifolia etc.

Materials and Methods

The image data products used in this investigation
are from the IRS 1-D & P-6 LISS- III (Linear Imaging
and Self Scanning) sensor (Indian Remote Sensing).
The study employed satellite data from February
2000 and February 2013. The National Remote Sens-

ing Centre (NRSC) Hyderabad, India, provided the
satellite data. Table 1 lists the specifications of the
satellite data used for change analysis. The flow-
chart of the research methodology is shown in Fig. 2.

Image Processing

Prior to the identification of change, satellite image
pre-processing is critical, with the primary goal of
building a more direct link between the gathered
data and biophysical processes. Change detection
also requires data improvement and radiometric
correction, which can lessen the disparities between
photos in changing atmospheric circumstances. The
two photographs were taken in the same season for
this. Using ground control points and the Global
Positioning System, all of the sceneries were chosen
to be radiometrically and geometrically corrected
(GPS). The IRS raw data was delivered in Digital
Number (DN) format, which represent reflected ra-
diance for each pixel and this was done using abso-
lute radiometric correction by measuring the spec-
tral reflectance of a reference object in the image.
IRS1 D and P6 image raw data were delivered in
Digital Number (DN) format, which represent re-
flected radiance for each pixel at the top of the atmo-
sphere. As a result, it was necessary to use remote
sensing software to perform a radiometric correction
on the photos in order to convert the DN to reflec-
tance values. This was accomplished by measuring
the reference spectral reflectance of the reference
object in the image using absolute radiometric cor-
rection. To improve the quality of each image, image
enhancing techniques such as histogram equaliza-
tion were used. For the purpose of constructing a
series of classed maps, the data of ground control
points were altered for each classifier produced by
its spectral signature.

Source: Khawaldah, 2016
Fig. 2. Flowchart of the study methodology

Table 1. Satellite images and bands were used for the Hasdeo sub-watershed landscape analysis.

Satellite/Sensor Year of acquisition Spectral Band Resolution

IRS 1D LISS 3 2000 B2: 0.52-0.59 µ 23.5 m
B3: 0.62-0.68 µ
B4: 0.77-0.86 µ
B5: 1.55-1.70 µ

IRS P6 LISS 3 2013 B2: 0.52-0.59 µ 23.5 m
B3: 0.62-0.68 µ
B4: 0.77-0.86 µ
B5: 1.55-1.70 µ

Source: National Remote Sensing Centre website (http:// nrsc.gov.in)
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Image analysis and LULC Classification

The hybrid classification technique was used to clas-
sify IRS 1D and P6 pictures. Images from 2000 to
2013 were classified using the hybrid classification
technique, which combined the findings of unsuper-
vised and supervised classification to get the maxi-
mum possible accuracy. Using training areas, a su-
pervised classification method was used. Finally, the
unsupervised classification signature was combined
with the supervised classification signature. This can
assign each pixel in an image to a different land
cover class using this method. Using IGIS software,
a maximum likelihood technique was used to dis-
cover the LULC class types, and then GIS software
was used to create the final map, as shown in Fig. 3.
This study comprised eight LULC classes in its de-
sign. Dense Forest (DF), Open Forest (OF),
Waterbody (WB), Riverbed (RB), Fallow Land (FL),
Agriculture Land (AL), Settlement (ST) and Mines
(M) are the LULC classes . Table 2 lists the descrip-
tions of these classes.

CA-Markov Model

In GIS, a raster data model is used to describe con-
tinuous data over space and to create a specific layer
that the TerrSet land change modeller can use. The
first technique is to analyse expected LULC based
on early and later maps of LULC that have enabled
us to obtain transition probability matrix records,
which is a probability of each land cover category
changing to another category.

Using two LULC in 2000 and 2013 derived from
satellite images, the Ca-Markov model was used to
predict the change for each class in the years 2035
and 2050, and to apply this model, which is based
on the number of a random process, X(t), if the
Markov process for any moment of time, t1, t2......tn
tn +1, thus, the random process will satisfy the equa-
tion:

Fx(X(tn+1)d” xn+1/X(tn)=xn, X(tn-1)=xn-1, X (t1) = Fx (X
(tn+1) d” xn+1) / X(tn) = xn)

When tn is the current time, tn+1 represents some
future points, and t1, t2, tn1 represents various
points in the past. The future is independent of the
past based on current data. To put it another way,
the future of a random process is not determined by
where it is now or where it was previously. If the
Markov chain is expressed by X[k], and the states
are x1, x2, x3, then the probability of transitioning
from state I to state j in one time instant is; Pi,j Pr
(X[k+1] = j / X [k] = i)

Results and Discussion

The correctness of the produced classes (of the clas-
sification process) must be tested, hence accuracy
assessment is essential. The accuracy is measured
using a variety of methods, including overall accu-
racy and the Kappa coefficient. A total of 18292 pix-
els were chosen for the IRS-1D LISS3-2000 LULC
map, which were subsequently validated against
1:50,000 topographic maps. The overall accuracy of
the results is 99.92 percent. Some groups were above
80% in terms of producer and user accuracy, with
the exception of open forest, settlement, and barren
terrain, which had producer and user accuracy of
55.3 percent, 11.2 percent, and 26 percent respec-
tively. The Kappa agreement index was 99.92 per-
cent. This number indicates that the classification
method correctly classified 99.92% of the data.

A total of 32650 pixels were chosen for the IRS-
P6-2013 LULC map, which were then validated
against 1:50,000 topographic maps. The overall ac-
curacy of the results is 99.75 percent. In terms of user
accuracy, waterbody and deep forest classes were
above 95 percent and above 85 percent, respectively.
The Kappa agreement index was 99.75 percent. This
score denotes that the categorization method was
successful in avoiding 99.75% of the errors.

Table 2. LULC classification classes and description.

Class Description

Dense forest (DF) Trees growing very closely together or closed canopy.
Open forest (OF) Trees growing in gaps or open canopy
Waterbody (WB) River, open water, lakes, ponds, and reservoirs
Riverbed (RB) Channel occupied by a river
Mines (M) Land representing coal mines
Fallow land (FL) Land areas of exposed soil and barren area
Agriculture land (AL) Land devoted to agriculture
Settlement (ST) Residential, commercial, industrial, transportation, roads, mixed urban
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Finally, the overall accuracy of more than 90% for
the two maps (2000 and 2013) demonstrates that the
image processing approach used in this work has
proven to be effective in providing compatible
LULC data throughout time.

Detection of LULC

This classification of LULC is done using the USGS
Land Cover System classification scheme. The land
cover classes were separated into two tiers under the
USGS method. To incorporate the LULC classes con-
centrating on watershed health for the two-time se-
ries and build a thematic map to investigate dynam-
ics of distinct LULC classes in the Hasdeo water-
shed, GIS and remote sensing were employed (Fig.

3). The data showed that between 2000 and 2013, the
settlement area and waterbody increased by 1527.39
km2 and 81.81 km2, respectively, indicating that the
number of people have increased and this has an
influence on agricultural land, dense forest, and fal-
low land. During the period, the fellow land showed
the loss, accounting for 1.04 percent of the total area.
Fellow and agricultural land encroachment was evi-
dent in the south-western half of the watershed, con-
tinuing toward Pali area. Agricultural land, open
forest, and dense forest areas, on the other hand,
have dropped by 173.43 km2 (1.67 percent), 533.68
km2 (5.13 percent), and 739.81 km2 (7.12 percent) re-
spectively over the same time period.

According to the study, population pressure and

Table 3. Area estimation and the overall amount of change in LULC for the study area

Level 1 Level 2 LULC-2000 LULC-2013
Code Class Class name Area Area

name Km2 % Km2 %

1 OF Deciduous forest land, Mixed forest land 2768.45 26.63% 2234.77 21.50%
2 WB River, Pond, Lake, Streams, Well 73.81 0.71% 155.62 1.50%
3 DF Deciduous forest land, Mixed forest land 2313.11 22.25% 1573.3 15.13%
4 RB Channels of river 156.97 1.51% 155.04 1.49%
5 FL Exposed soil and barren area 287.96 2.77% 179.89 1.73%
6 AL Farmlands 3556.47 34.21% 3383.04 32.54%
7 ST Residential, commercial, industrial, 1063.51 10.23% 2590.9 24.92%

transportation, roads, mixed urban
8 M Strip mines, Gravel pits 176.09 1.69% 123.81 1.19%

Fig. 3. LULC changes during (2000-2013) in Hasdeo watershed
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settlement probability are constantly exerting pres-
sure on agricultural land, open forest, and dense for-
est areas. Another decline occurred in the riverbed
class, which decreased by 1.93 km2 (0.02 percent)
during the same period, contraste to the waterbody
class, which gained an additional 81.81 km2 (0.79
percent) due to the good monsoon of 2013. Further-
more, because urban spread generally occurs in a
radial fashion around the city centre or in a linear
route along highways, a rapid urban sprawl oc-
curred around the Biakunthpur, Korba and Surajpur
mining sectors (Sudhira et al., 2004). As a result, Pot-
ter et al., (2009) found that the presence of transpor-
tation routes inside the study area supported urban
sprawl, with city transportation as socially polarised
as the city structure itself. The expansion of water-
shed settlement areas, particularly in town regions,
had a severe impact on the local environment. The
abundance of water bodies attracts people to stay in
the watershed, but water resources are beginning to
run out in some mining areas. Farming is the most
common activity in the area, with about 80% of the
inhabitants involved in some way. Paddy is the
main crop, with some legumes and vegetable kinds
added for variety. Forest areas in the watershed’s
southwestern corner have contact tribal inhabitants
with the local people. They harvest key forest timber
species for personal or social gain. Nonwood forest
products such as tendu leaves, sal seed, mahua

flower, wild medicinal herbsare not collected infor-
mally. The grazing habits of domestic animals have
a direct impact on the ability of plants in the forest to
regenerate, resulting in a significant loss of forest
area over time. As a result, the study employed the
Markov model to forecast LULC for the years 2035
and 2050, as well as the future of watershed LULC
health and direction, allowing for improved plan-
ning in the area.

Predicting 2035 and 2050 LULC using CA-Markov
Model

The CA-Markov model was used to forecast the
2035 and 2050 LULC based on transition probability
matrix records derived from the observed 2000 and
2013 LULC. The main change happened on agricul-
tural land between 2035 and 2050, as per the prob-
ability matrix. Agricultural land with settlement ar-
eas and open forest, according to fieldwork findings,
are transient categories that are subject to larger
changes over time.

As illustrated in Figure 3, agricultural land in-
crease is forecast in the south-central part of the ex-
isting open forest region in 2035, rather than in the
east of the Hasdeo subwatershed. Another 565.33
km2 is expected to be added to the settlement area
(to be 30.36 percent of the study area compared to
24.92 percent in 2013). Dense forest and Fallow areas
are expected to account for 9.95 percent and 3.05

Fig. 3. Predicted LULC change from CA-Markov modeling for the years 2035 and 2050
Year 2035 Year 2050
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percent of the study area in 2035, respectively, com-
pared to 15.13 percent and 1.73 percent in 2013.

Agriculture land is expected to decrease in the
west-central part of the watershed in (2000-2035)
and (2000-2050), with 6.08 percent and 9.09 percent,
respectively. The dense forest is expected to shrink
12.30 percent during 2000-2035 and 15.68 percent
during 2000-2050. The southwestern part of the wa-
tershed had the most projected forest decline. How-
ever, compared to 25.16 percent (2035), the open for-
est area is expected to shrink 24.69 percent (2050)
(Table 4).

Validation of CA-Markov Model Results

The validation of the model’s performance is a criti-
cal step in determining its capacity to replicate the
known data set. In the literature, many goodness-of-
fit statistics have been utilised in spatial modelling
(Knudsen and Fotheringham, 1986). The perfor-
mance of the Markov model have been evaluated
and its predictions have been validated against a
real data set using one main statistical test of good-
ness-of-fit. R2 (Birkin et al., 2015, Fotheringham,
1986) is a regularly used statistic that is formulated
as follows: for validation. The model validates the LULC areas

as per received data by the user. The comparison of
different classes was also based on conversion.

Conclusion

Not only is it vital to have information about how
LULC patterns vary over time for sub-watershed
planning, but it is also necessary for better land re-
source management. This study has demonstrated
the value of using RS and GIS techniques to produce
accurate LULC maps and change statistics for one of
the largest sub-watershed the Hasdeo watershed in
Northern Chhattisgarh, which is useful for effec-
tively monitoring settlement, forest area, and agri-
culture land expansion over time.

The study area’s covered dense forest  2313.11
km2 in 2000 and 1573.30 km2 in 2013, or 22.25 per-
cent and 15.13 percent, respectively, as per  LULC
change detection. However, it is expected to shrink

Table 4. Predicted areas of LULC for 2035 and 2050 in the study area

LULC classes OF WB DF RB FL AL ST M

2035 Area in km2 2615.74 214.16 1034.61 24.43 317.49 2924.39 3156.23 109.32
Area in %age 25.16% 2.06% 9.95% 0.23% 3.05% 28.13% 30.36% 1.05%

2050 Area in km2 2566.77 231.83 683.02 28 581.14 2611.06 3628.1 66.45
Area in %age 24.69% 2.23% 6.57% 0.27% 5.59% 25.11% 34.90% 0.64%

Fig. 4. Observed LULC change in 2013 versus the pre-
dicted for the same year in Hasdeo watershed

Here, So represents the mean of the Sij’s (observed
values) and Sc represents the mean of the ˆSij’s (pre-
dicted values) and R2 values range between zero
and one. The closer the value of R2 is to one the bet-
ter, since value of one shows an exact correspon-
dence between the observed and predicted values,
whilst a zero value reflects correspondence.

Two maps of LULC in the study region for the
years 2000 and 2013 were used to calibrate the
Markov model in order to construct the 2013 LULC
map in the study area using the Markov model (Fig.
4). The Markov-created LULC for 2013 was com-
pared to the observed 2013 LULC of the study area
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by 1034.61 km2 (9.95%) in the next 22 years, 683.02
km2 (6.57%) in the next 37 years. Agricultural land
change detection analysis, on the other hand, shows
that agriculture land was 3556.47 km2 (34.21 per-
cent) in 2000, but was reduced to 3383.04 km2 (32.54
percent) in 2013. However, it will be 2924.39 km2

(28.13 percent) and 2611.06 km2 (25.12 percent) in
the next 22 and 37 years, respectively. However, the
settlement area in the study area was 1063.51 km2

(10.23 percent) in 2000, 2590.90 km2 (24.92 percent)
in 2013, and expected to be 3156.23 km2 (30.36 per-
cent) in 2035, and 3628.10 km2 (34.90 percent) in
2050. The statistics show a net decrease in thick for-
est area in the western, eastern and northern parts
watershed. It also suggests that due to the abundant
water supply and well-connected highways, the
settlement area will be primarily concentrated in the
eastern and southern parts.

In the next 37 years (2050), the settlement will
also display an increasing pattern, indicating that
the population in the area will be high. Because of
the abundant work opportunities in the mining and
industrial areas, the majority of migratory individu-
als from the state and other parts of the country will
settle in the area. Riverbed, fallow land, and mines
areas were converted to habitation and rich water
availability between 2000 and 2013.

In the present investigation a GIS-based Markov
model have been used to forecast future LULC
change in the study area in 2035 and 2050. In 2013,
the model was calibrated using satellite pictures
from 2000 and 2013 of the study area to anticipate
the LULC. The anticipated LULC map in 2013 was
then compared to the observed LULC map in 2013.
The results of calculating the predicted and ob-
served LULC map of the study are in 2013 revealed
that the model performed well in simulating future
LULC change within the study area. However, due
to the rapid population growth noted above, real
LULC class changes in the study area were larger
than the expected expansion by the Markov model.

Study Implications and Future Research

The current study has implications on following
three areas can be stated in three areas. First, the
findings suggest that dense forest, open forest, and
agricultural land declination will occur in several
places within the study area in 2035 and 2050, re-
spectively, with an expansion in water body and
settlement. In terms of road networks, infrastruc-
ture, pond creation, canal formation, agriculture

land distribution, and allocating some locations for
future watershed management activities, it should
be taken into account by forest, agriculture, and
water resource planners in their future plans for the
Hasdeo watershed. Second, the analysis revealed
that settlement and farm land displaced the major-
ity of the forest(dense and open), which may be
averted through future regulations or initiatives.
Finally, for efficient monitoring of watershed plan-
ning and management trends, watershed planners
and decision makers should use remote sensing and
GIS approaches. As a result, their expectations and
predictions of future settlement development and
location, forest distribution patterns, and agriculture
land utilisation techniques would improve for more
sustainable land management.
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